Using Design Patterns to Build Web-Based 3D-
Collaborative Virtual Environments

Chadwick Carreto’, Rolando Menchaca?, Leandro Balladares’, Rolando Quinterol

! National Polytechnic Institute, Computer Science Research Center,
07738, Mexico City, México
{ballad, quintero}@cic.ipn.mx; chad_carreto@hotmail.com
2 University of California Santa Cruz, School of Engineering, 1156 High Strzet,
95064 Santa Cruz, CA, USA
menchaca@soe.ucsc.edu

Abstract. Although in the past decade a lot of research efforts have been con-
centrated into building multi-user virtual worlds such as 3D collaborative vir-
tual environments (CVE) and gaming platforms [1], the proprietary nature of
such systems and their associated complexity has often resulted in large mono-
lithic applications that are difficult to maintain and extend. At the same time,
the openness and scalability of the web let us imagine what could be the next
step in the evolution of information sharing and more intuitive collaboration - a
web in three dimensions to model the world we live in. Undoubtedly, creating
such interactive worlds depends on resolving a number of software engineer-
ing challenges, most of them resulting from the conflicting requirements of
speed vs. reliability, scalability vs. bandwidth usage, replication vs. consis-

tency or flexibility vs. tight-coupling. In the next sections we propose a

framework to build 3D Web-based Collaborative Virtual Environments based

on existing and well documented design patterns [2] that will help developers

to create this kind of applications. This paper also discusses the foundation for

an implementation in Java of such a framework based on an interaction model

proposed by the authors of this work.

Keywords: Design Patterns, Software Engineering, 3D-Collaborative Virtual
Environments, Human Computer Interaction.

1 Introduction

According to [6] a Collaborative Virtual Environment (CVE) is: “...a computer-
based, distributed, virtual space or set of places. In such places, people can meet and
interact with others, with agents or virtual objects. CVEs might vary in their represen-
tation richness from 3D graphical spaces, 2.5D and 2D environments, to text-based
environments”. Commonly, those CVEs that use 3D graphical spaces as a representa-
tion means are knew as 3D-CVEs. Developing a 3D CVE from scratch can be a tedi-

© A. Gelbukh, C. Ydriez Mdrquez, O. Camacho Nieto (Eds.)
Advances in Artificial Intelligence and Computer Science
Research on Computing Science 14, 2005, pp. 265-276

266 Carreto Ch., Menchaca R., Balladares L., Quintero R.

ous task as it involves finding the right compromises to minimize both network band-
width and latency and yet achieve -real time interaction and appealing visual
rendering. This involves solving a number of conflicting requirements: (1) to be scal-
able with no single point of failure a virtual world needs to be distributed, making
synchronization between participants more difficult to achieve. (2) To be meaningful
to the application some data such as audible audio streams has to be delivered under
severe time constraints. To compensate unpredictable latency on the network or unre-
liable delivery some techniques can be employed but to the expense of bigger band-
width, itself resulting in less scalability. (3) Complexity grows when there is a need to
support user interfaces on various devices of different memory and processing
capabilities such as desktops, PDAs and mobile phones.

In [23] a model for the creation of Distributed Virtual Worlds (DV W) through the
use of distributed objects is proposed by Menchaca and Quintero; this model called
Soul — Body Model aims to reduce the complexity of developing DVW by separating
the communication issues form the virtual reality issues. The work described on this
paper, based upon the proposed concepts, extends the use of DVWs for the creation
of Collaborative Virtual Worlds (CVW). One of the most important characteristics of
the framework architecture presented in this paper is that it encapsulates the algo-
rithms and protocols related to the consistency of the world, making this, transparent
for the users and facilitating the implementation of CVE. In this manner, algorithms
and protocols can be easily extended, optimized and replaced without affecting other
entities in the world. The implementation of the framework, as is described in the fol-
lowing paragraphs, enables the use of different actualization schemes for the entities
of the world' and facilitates an easy distribution management of processes between
clients and a server, or otherwise its centralization within a central server. From the
developing process point of view, the goal of the collaboration model we propose is
not only to develop CVE faster, but also the resulting CVE have similar structures,
they are easier to maintain and eventually to integrate. Design patterns were very use-
ful to fulfill with this characteristics, as we describe in the next sections.

2 Interactive — Entities Model

The proposed CVEs are composed by: individuals, artifacts and decorations. Indi-
viduals can be users’ avatars or autonomous entities (agents) that interact within the
CVE through a service based concept. The individuals define the actions that users or
agents are able to perform. Artifacts are elements that individuals can interact with,
their services are implemented by software components and they aren’t embodied by
any one user but, unlike agents, these don’t realize some task in autonomous way
unless some individual request them through one of the services they offer. These ar-
tifacts enable collaboration tools such as shared content editors, blackboards, etc.
Decorations are static objects (or animated with deterministic time- based behavior)
that are visible within the virtual world but don’t have collaboration interface. As in a

I Identifying actualization schemes is very valuable because there is not a best actualization
protocol for every situation [3], [4], [5].

Using Design Patterns to Build Web-Based 3D-Collaborative Virtual Environments 267

real world, individuals sharing common characteristics can be classified into soc.ial
groups. In this case, the characteristics that define the property of a group are the in-
dividuals® abilities and the way in which they interact with other components of the
CVE (individuals or artifacts). Thus, as it is shown in Fig. 1a, the worlds are popu-
lated by sets of individuals pertaining to different social groups and by sets of arti-
facts that provide some type of service.

. Relation P/I
--------- Social - "
) = . Provides
O Decorations " cvE N Groups g cero
ﬁ'Anifar:ls ‘a’ 1
J oup
Individuals ’
‘\© ©
x| Autononwus
Entities '
(Agents) ‘ |
\
\
Non - \

. © Autonomous
Entities (Users)

-

-

- -
Cranee=”

(a) ®) .
Fig. 1. (a) CVE conceptual model; (b) Collaboration graph: a directed graph defining
the collaboration relationships in a CVE.

The set of all existing social groups within a CVE is denoted as §, and t_he set of flll
types of artifacts as 4. Each group partially defines the way its elements interact with
other group elements. In order to totally define the interactions that can be cam.ed out
within the CVE, a directed graph G=(V,E) where ¥ =Su 4 and £ g SUAxS'is pro-

posed, and where the edges represent a service relationship labeled with a pair Event,
/ Interface , 5 1, where: Event, is the event that will trigger the collaboratan bt;-
tween entities from TG(Target Group) with entities from SG (Sour ce Group); ff @15
used, then SG is an artifacts group; Event, = type of event = {Pr oximity (F), Inside Of
(10), Right Click Over (RCO), Left Click Over (LCO), etc.}. The relations defined in
the graph are translated into graphical interfaces that will appear in the browsers of
the users when their avatars (or the avatars of some other individual) produce a col-
laboration event.

3 Framework and patterns

A framework embodies a generic design, comprised of a set of cooperating classes,
which can be adapted to a variety of specific problems within. a given domain [6]. A
framework is a generic package i.e. one whose contents are intended to be used by
"plugging in" specializing elements in place of the parameterized parts of the frame-
work package. Any elements may be substituted for; alternately, d.ls‘tmgunshed substi-
tutable elements and assumptions about them may be marked explicitly. A framework
can be thought of as a “semi-complete” application. Design patterns are a me_thod of
codifying design knowledge in separate but interrelated parts [2], [7], [8]. Design pat-
terns can describe the purpose of a framework, can let application programmers use a
framework without having to understand how it works in detail, and can teach many

268 Carreto Ch., Menchaca R., Balladares L., Quintero R.

of the design details embodied in the framework [9]. We present below the main pat-
terns that make our framework.

3.1 Model-View-Controller (MVC)

The Model-View-Controller is a design pattern largely used and described in the lit-
erature that conforms nicely to the previous requirements:

_ The Model: holds all data relevant to a domain entity or process, and performs be-

havioral processing on that data.
d in the Model. It is the view's responsibility to

— The View: displays data containe
maintain consistency in its presentation when the _mode! changes. This can be
achieved by using a push model, where the view registers itself with the model for

change notifications, a pull model, where the view is requnsible for calling the
model when it needs to retrieve the most current data, or a mixture of both models.

In the next paragraphs we describe how these models were implemented in our ap-

proach.
— The Controller:
in the View, which may result i

is the glue between View and Model. It reacts to significant events
n manipulation of the Model.

Od— —0
Remets ,.a"' RemetaSe
;

TFad .o .9 4 e
Cellaborat Ceollabarst ot RemelaType RemetaTyp: RemeteTyped otaTyped RemeteType
e Applet [T | ,2 I ‘ } l
wppiet] Warld1 SubjeciTypet SubjectType2 SubjestTypeN AgemTypet AgeniType2 ApentTypen
P o Agent OehaviesQuene

I v
UnisastRemotaObjest (L
Runnabdle

Fig. 2. Main interfaces of the CVEs.

The major interest in this separation of concerns is to minimize the degree of coupling
between objects. For example, the same 3D model might be rendered on two different
views, one using Java3D [10] and the other OpenGL [11]. In out approach, the CVEs
are mainly made up of three classes (corresponding to each one of the components of
the Model — View — Controller design pattern): RemoteSoul (Model), Collaborative-
World (Controller) and CollaborativeApplet (View). The RemoteSoul class represents
the state and behavior of the individuals and implements the social groups defined in
the collaboration graph. A CollaborativeWorld class serves as a meeting point for the

Using Design Patterns to Build Web-Based 3D-Collaborative Virtual Environments 269

participants and, as explained further, as a container of souls? and references or just as
a container of references. The CollaborativeApplet class represents the user’s envi-
ronment. It is the class where rendering is carried out and depending on the system
architecture (centralized or distributed) the processes associated with the soul of the
individual that represents the user or agents are made available. Fig. 2 shows a sim-
plified class diagram of the interfaces that represent the abstractions mentioned. In the
same diagram it is possible to observe examples of classes that implement these inter-
faces. To decouple the Model from the View the Observer pattern can be applied [2].
For our purpose, in one of our approaches, the model is the concrete subject and the
view is the observer. The concrete subject maintains a list of interested observers. The
view registers interest in the model by using the subject's interface. When the model
changes it will go through its list of registered views and notify them by calling their
update () method. Users access the CVE by means of a Web browser. The browser
accesses a HTTP server where it obtains the CollaborativeApplet (CA) that is in
charge of executing all the necessary code to participate in the CVW.

Fig. 3a shows an example of a Collaborative Applet appearance. As it is shown in
Fig. 3b, the CA acts as a bridge between the technologies in charge of rendering the
CVE and the remote objects that implement the CVE behavior. As was mentioned,
the CollaborativeApplet is in charge of contacting the CollaborativeWorld to get the
code necessary to interact within the CVE, meaning references to the souls of all par-
ticipants and a reference to the soul of the user’s avatar (or a factory to construct the
soul within the applet). Within the Applet (View), threads are constructed to obtain
the state of the objects that implement the souls of subjects and artifacts (Model). We
can use different update schemes depending on the nature of the application, such as:

— Pooling: a thread is associated with the reference of each active element of the
CVE. The thread performs a cycle where it invokes a remote object method to ob-
tain his state. With this information it updates the appearance of the element in the
VW.

— Update: when the state of a soul (Model) is modified, it makes calls to its refer-
ences (callbacks) so that clients update the appearance of this element in the View.

— Both Sides Processing: the code that is in the browser (View) implements part of
the state and behavior of the souls. Local objects make calculations associated with
the behavior (Model) of the subjects but they maintain communication between
them for synchronization (actually this scheme is not implemented in our ap-
proach).

Because the update schemes are implemented between the souls and their references,
it is possible to find, in the same CVE, subjects and artifacts that use different update
schemes. In other words, each subject has the flexibility to implement the protocol
that better covers its particular needs.

% From a practical point of view, in the Quintero and Menchaca Mode! [23] souls are distrib-
uted objects which realize all the processing tasks that the subjects need to inhabit the virtual
world.

270 Carreto Ch., Menchaca R., Balladares L., Quintero R.

Fin €M ‘= Foues [ivh o &
Qo - oy a] 2D e syrain B @
e eyt e emeibeeteeted | v e e T

Méxco DE. CIC-IPN i
|

JEp———— IR e e Bl o e 4

) Aot cavstarted @ Ulreent
(a)
Client
Web Browser RAD
{E. Netscape) App
r Java Applet \ I
\ Interaction
r 7“"” Paoel < TRMPHTTT Interuet
be:
e -lp’- {l ba
r VRML Losder
~ Server
(b)

Fig. 3. (a) Collaborative Applet GUI; (b) The Collaborativc.Applet serves as bridge between
the technologies in charge of rendering the CVW and the objects that keep their state and im-

plement their behavior.

3.2 Abstract Factory

This pattern documented in [2] provides an interface for creating families of related
or dependent objects without specifying their concrete classes. Clients call the cre-
ate () operations to obtain instances but aren’t aware of the concrete classes they
are using. This enables the factory to encapsulate how objects are created. In out
framework, the main task of the CollaborativeWorld class (Controller) is to keep a

Using Design Patterns to Build Web-Based 3D-Collaborative Virtual Environments 271

record of the participants of the CVW. These objects generally reside on the same
machine as the Web server that hosts the world. When a new user accesses the Web
site, he or she downloads a CollaborativeApplet. The first operation of the applet is to
obtain a remote reference to the object that implements the CollaborativeWorld inter-
face. Then, by means of the world’s reference, the client requests:

— Registration of a reference to its CollaborativeApplet.

— In the case of the centralized scheme, the CollaborativeWorld creates a new soul
and returns a reference to it.

— In the case of the distributed scheme, it returns a soul factory (Sou/Factory) in or-
der to create the soul in the client’s machine. In this case, a second call is necessary
to register in the CollaborativeWorld the reference of the soul that has just been
created (see Fig.4).

— References of all the participants, who at the moment, are within the world.

Sﬁui-‘ec!o&
(fromcore)

SouitSoul()

A

Subject Type2Soul=scloty SubjectTypet SoulFactaory

Fig. 4. A fragment of the code that is executed by the CollaborativeApplet in order to create
the soul in a local way. Depending of the object type, the CollaborativeApplet receives the
appropriated factory.

Additionally, the server notifies to all other participants that a new individual has en-
tered the world. The CollaborativeWorld object produces callbacks to the other par-
ticipants (CollaborativeApplets), sending the reference of the new individual and its
geometry as an argument. When an individual leaves the CVW, the Collaborative-
World is responsible to notify all participants that its reference should be eliminated
from their respective containers.

3.3 Prototype

This pattern specifies the kinds of objects to create using a prototypical instance, and
create new objects by copying this prototype. The prototype pattern is used when a
system should be independent of how its products are created, composed, and repre-
sented, and when the classes to instantiate are specified at run-time, for example, by
dynamic loading. In our framework, in order to isolate the subjects and the collabora-
tive applets from the details of the interfaces defined by other social groups, all the
graphic interfaces must specialize the abstract GraphicInterface class.

272 Carreto Ch., Menchaca R., Balladares L., Quintero R.

#rof Graphicinlerfaca
(trom core)
RemoteSou! [}
trom core)

GISubjsctTypel GISubjactType2

GISubjectTypeti GISubjectTypei2 GISubjectType21 GISubjectType22

Fig. 5. Diagram of classes of the social groups G1 and G2.

Fig.5 shows the summarized class diagram of the graphic interfaces for two hypo-
thetical social groups: GISubjectTypel and GISubj_ectTypeZ. It defines the set of
graphical components used to access the inherent abilities of the subjects (its respec-
tive HS methods). There are two other graphical interfaces for group GI: GiSub-
JjectTypell for the interaction with other individuals of the group G/ (because there is
an edge from G/ to G/ in the collaboration graph) and GISubjectTypel2 for the inter-
action with individuals of the group G2 (because there is and edge from G/ to G2 in
the collaboration graph). There is a similar case for group G2.

I GISubjectType2} E | GlSub)ecﬂ‘ypelzl
< Colaboracién >%

s e G s2€ G2

Fig. 6. Interchange of graphical interfaces between two individuals because of a collaborative
event.

The collaborative applets don’t need to have previous knowledge of the graphical in-
terfaces of the individuals. In the same way, individuals don’t need to have previous
knowledge of the interfaces that other subjects define. This is because the graphical
interfaces are associated with references to the soul of the specific type of subject.
When a collaboration event takes place, souls construct the suitable graphical inter-
face (that corresponds to the type of subject with whom it is collaborating) and send it
to the target CollaborativeApplet. In order to dynamically identify the social group of
a subject or the type of an artifact, we use the reflection support within the Java lan-

guage (see Fig. 6).

Using Design Patterns to Build Web-Based 3D-Collaborative Virtual Environments 273

3.4 Composite

This pattern composes objects into structures to represent part-whole hiergu'chies.
Composite lets clients treat individual objects and compositions of objects uniformly
[2]. In the framework, the Agent class represents a common base class for user de-
fined agents. Therefore, from the programmer’s point of view, an agent is simply an
instance of a user defined Java class that extends the base Agent class and imple_ment
the corresponding RemoteTypeN interface. This implies the inheritance of a basic set
of methods that can be called to implement the custom behavior of the agent. A
scheduler, internal to the base Agent class and hidden to the programmer, automati- -
cally manages the scheduling of behaviors. The programmer has to implemept .th.e
setup() method in order to initialize the agent. The programmer should use this ini-
tialization procedure to: add tasks to the queue (BehaviorsQueue class) of ready tasaks
using the method addBehaviour(). The framework provides ready to use Beha\flor
subclasses that can contain sub-behaviors and execute them according to some pol}cy.
For example, a SequentialBehavior class is provided, that executes its sub-behaviors
one after the other for each action() invocation. In order to describe the behavior§ of
the autonomous entities we define a hierarchy of classes which allows defining sim-
ple or composite behaviors (based in the composite design pattern); the types of be-
haviors are: finite state machine behaviors, sequential behavior, parallel behavior, one
shot behavior and cyclic behavior.

4. Area of Interest Management

Area of Interest Management designates a set of algorithms whose aim is to limit the
scope of messages received by a participant [12]. Without them the network traffic
would be tremendous as a participant would receive every single event and .even
those of entities that he/she can’t see and interact with. As one can adopt many differ-
ent strategies to control the flow of messages between participants such as based on
geographic location, time or functional criteria, the Strategy design pattern introduced
in [2] can encapsulate each algorithm and make them interchangeable. In our case,
the collaborative graph defines some way of area of interest management: one ap-
proach is to receive messages and updates only of those individuals of the same social
group; another scheme is to receive messages and updates from individual of the
same social group and those with which collaboration will be carried out. Actually,
we are working in the implementation of these approaches in our framework.

5. Tests

To test the framework, we develop a very simple CVE of a virtual shop in which only
will have two types of users: sellers and customers.

274 Carreto Ch., Menchaca R., Balladares L., Quintero R.

B N T YT T N . .lei
e [dren yu [sets Deowes fngh i i . . _ -
Jomu- a3 10 Qe ifevm (e HSaB-I8 Be e, g
| Beeccin [] e 1111 301 2133 el Constn smwhimms Fow o O Ve
j‘

Prototipo de un Mundo Virtual Distribuldo con
Colaboracion

R < L B R e LR ."..W".'.'n'*'.' m-z‘.“-‘.":

=

p—r— T v

Fig. 7. (a) Client identification to access the CVE; (b) client view of the CVE.

In this first implementation the shop is empty and only sellers and consumers habitat
it. We also want that the sellers and consumer can interact according to their roles,
that is sellers offer services and products and consumers request services or buy
products’. Also, we want consumers and seller could communicate through textual
messages, like in a chat (in a more complex application could be used the Java Voice
XML API in order to support voice communication). For this application we have de-
cided to use the distributed architecture, although centralized architecture could be
used too (but supposing the CVE will be populated by many sellers and impulsive
consumers, the distributed architecture will be a better option). The updating scheme
we have decided to use is update scheme, in this way the view will be updated only
when the state of the entities change (when the consumers or sellers change their po-
sition in the world). In this case we only have two social groups and the correspond-

ing interactions among them (see Fig. 7).

6. Relatgd Work

CVEs have extensively been studied by various research organizations. However, is
being used very little software engineering knowledge in the construction of these
applications. Software engineering researchers and people interested in CVW appli-
cations are working in this direction, since the methodological and technological
point of view [13], [14], [15], [16], [17], [18], [19]. Some related work includes the

3 In this first implementation we only want to see how to use the tools we have de-
scribed, so consumers can’t buy products and transactions aren’t supported.

Using Design Patterns to Build Web-Based 3D-Collaborative Virtual Environments 275

Java Adaptive Dynamic Environment (JADE) [20] and more recently the NPSNET-V
framework [19]. They both specify the notion of a plug-in architecture [21] made of
dynamically loadable modules organized into a hierarchy of module containers. In
[17] a framework is proposed following the same path, defining a Component Con-
tainer being able to manage the various components (such as a Network Component
for the exchange of messages between machines, or a People Component to manage
avatars), the core of that infrastructure follows principles of the OMG's Model Driven
Architecture, whose aim is to separate the application logic from the underlying tech-
nology [22].

7. Conclusions

From the developing process point of view, the goal of the collaboration model is not
only to develop CVE faster, but also the resulting CVE have similar structures. They
are easier to maintain and eventually to integrate. One of the most important charac-
teristics of the architecture described is that it encapsulates, inside the souls and its
references, the algorithms and protocols related to the consistency of the world. In
this manner, algorithms and protocols can be easily extended, optimized and replaced
without affecting other entities in the world. As a future work, we must work in ex-
tending the model and the framework to support validation of new abilities for enti-
ties at run-time; it must be researched some way to give semantics to the virtual
worlds. Also we must work in security, quality of service (QoS) and persistence as-
pects applied to CVE. We are working to improve the model and the framework in
order we can develop more interesting applications, such as virtual laboratories,
which were one of the reasons we had started this work.

8. Acknowledgements

The authors wish to thank the anonymous referees for their careful reading of the
manuscript and their fruitful comments and suggestions. This work was part of a mas-
ter degree thesis in the Computer Research Center of the IPN [24], and it was sup-
ported by: The National Polytechnic Institute of Mexico through CGPI and the
COFAA, the Computer Science Research Center and by the Mexican National Coun-
cil for Science and Technology (CONACyT).

References

1. Frécon, E., Stenius, M.: DIVE: A Scaleable Network Architecture for Distributed Virtual
Environments. Dist. Systems Engineering Journal (DSEJ), 5 (1998) 91-100 ‘
2. Gamma et al.; Design Patterns: Elements of Reusable Object- Oriented Software. Addi-

son-Wesley (1997)

276

=0 ® No

12.

13.

14.

15.

16.

17.

18.

19.
20.
21.
22.

23.

24,

Carreto Ch., Menchaca R., Balladares L., Quintero R.

Atul, P., Hyong, S., Jang, H.: Data Management Issues and Trade-Offs in CSCW Sys-
tems”. IEEE Transactions on Knowledge and Data Engineering, Vol. 11 No. 1 (1999)
Hans-Peter, D., Garcia-Luna-Aceves, J.: Group Coordination Support for Synchronous

Internet Collaboration. IEEE Internet Computing, March-April (1999)
Vidot, N., et-al.: Copies Convergence in a Distributed Real-Time Collaborative Environ-

ment. Proceeding of the ACM 2000 Conference on Computer Supported Cooperative
work. Philadelphia, Pennsylvania, United States (2000).

Sean, C., Potel, M.: Inside Taligent Technology. Reading, MA, Addison-Wesley (1995)
Alexander, C. et al.: A Pattern Language: Towns, Buildings, Construction. Oxford Uni-
versity Press (1977)

Borcher, J.: A Pattern Approach to Interaction Design. Wiley (2001)

Johnson, R.: Documenting Frameworks Using Patterns”. Proc. of OOPSLA'92 (1992)
Sowizral, H., Rushforth, K., Decering, M.: The Java 3D API Specification. 2", Edition,
The Java Series, Sun Microsystems, Addison Wesley (2000)

Angel, E.: Interactive Computer Graphics: A Top down Approach with Open GL. Second
Edition, Addison Wesley (2000)

Elizabeth, F., David, N., Alan, J. (Editors): Collaborative Virtual Environments: Digital
Places and Spaces for Interaction. Springer-Verlang, ISBN 1-85233-244-1 (2001)

Fencott, C.: Towards a Design Methodology for Virtual Environments. Proc. of the Work-
shop on User Centered Design and Implementation of Virtual Environments. University of
Teeside (1999).

Duff, J., W., Purtilo, J., Capps, M., Stotts, D.: Software Engineering of Distributed Simu-
lation Environments. IEEE Proceedings of WET ICE ’96 (1996)

Sanchez, M-I, De Amescua, A, Cuadrado, J-J., De Antonio, A.: Software Engineering
and HCI Techniques Joined to Develop Virtual Environments. Proc. of the
ICSE'03International Conference on Software Engineering: Bridging the Gaps Between
Software Engineering and Human-Computer Interaction, Portland, Oregon, May (2003)
Méndez, G., Sanchez, 1., De Antonio, A.: Towards a Development Methodology for the
Construction of Virtual Environments. Proceedings of the VI Jornadas de Ingenieria de
Software y Bases de Datos (JISBD 2001), Almagro (Ciudad Real), (2001)

Alexandre, T.; Using Design Patterns to Build Dynamically Extensible Collaborative Vir-
tual Environments. ACM Proc. of PPPJ ’03, June 16-18, Kilkenny City, Ireland (2003)
Garcia, P., Montala, O., Pairto, C,, Rallo, R., Skarmeta, A.: MOVE: Component Group-
war Foundations for Collaborative Virtual Environments. ACM Conference on CVE
(2002) 55-62 :

Kapolka, D., Capps, M.: A Unified Component Framework for Dynamically Extensible
Virtual Environments. In Proceedings of CVE’02, September (2002)

Oliveira, M., Crowcroft, J., Slater, M.: Component Framework Infrastructure for Distrib-
uted Virtual Environments, San Francisco, ACM CVE 2000, Sept. (2000)

Douglass, B.: Real-Time Design Patterns: Robust Scalable Architecture for Real-Time

Systems, Add.-Wesley, Sept. (2002)
Mellor, S., Balcer, M.: Executable UML: A Foundation for Model-Driven Architecture,

Addison-Wesley, (2002)

Menchaca R., Quintero R.: Distributed Virtual Worlds for Collaborative Work based on
Java RMI and VRML, Proceedings of the IEEE 6th International Workshop on Group-
ware CRIWG (2000)

Carreto, C.: Architecture for Collaborative Virtual Worlds, Master Thesis, Computer Sci-
ence Research Center of the National Polytechnic Institute, Mexico, in Spanish (2004)

